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Abstract

This paper presents a new algorithm for generating the conformational statistics of lattice polymer models. The inputs to the algorithm are the
distributions of poses (positions and orientations) of reference frames attached to sequentially proximal bonds in the chain as it undergoes all
possible torsional motions in the lattice. If z denotes the number of discrete torsional motions allowable around each of the n bonds, our method
generates the probability distribution in end-to-end pose corresponding to all of the zn independent lattice conformations in O(nDþ1) arithmetic
operations for lattices in D-dimensional space. This is achieved by dividing the chain into short segments and performing multiple generalized
convolutions of the pose distribution functions for each segment. The convolution is performed with respect to the crystallographic space group
for the lattice on which the chain is defined. The formulation is modified to include the effects of obstacles (excluded volumes) and to calculate
the frequency of the occurrence of each conformation when the effects of pairwise conformational energy are included. In the latter case (which
is for three dimensional lattices only) the computational cost is O(z4n4). This polynomial complexity is a vast improvement over the O(zn) ex-
ponential complexity associated with the brute-force enumeration of all conformations. The distribution of end-to-end distances and average
radius of gyration are calculated easily once the pose distribution for the full chain is found. The method is demonstrated with square, hexagonal,
cubic and tetrahedral lattices.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Exact enumeration of all conformations of lattice models of
long polymers is a computational problem of exponential
complexity. However, the generation of conformational statis-
tics for this exponential number of phantom chain conforma-
tions is in fact tractable and we provide exact algorithms to
compute these statistics. We present a new method for com-
puting conformational statistics of lattice random-walk models
of polymers by performing convolutions of functions on crys-
tallographic space groups. While this method does not account
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for sequentially distant interactions in the chain, it does ac-
count for local interactions within the chain, as well as all
interactions of the chain with obstacles and boundaries of
arbitrary shape.

In previous works, probability distributions (pdfs) of classi-
cal random walks on lattices have been computed by perform-
ing translational convolutions of ‘‘one-step’’ pdfs that describe
allowable translations in a lattice (see e.g., [40] and references
therein). However, this is not the problem that we are address-
ing. In lattice models of phantom polymer chains, a greater de-
gree of reality can be imposed by disallowing immediate
reversals and by incorporating the effects of sequentially adja-
cent interactions. Incorporating both these effects into overall
conformational statistics requires knowledge of the local rela-
tive orientations of bonds in the chain. Therefore, translational
convolutions in the lattice are not sufficient. In contrast,
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convolution on space groups (which include the effects of
local orientational changes) becomes a powerful tool.

In this section we provide a brief review of related litera-
ture, the torsional random-walk model that will be used, and
the limitations of brute-force enumeration. This provides the
necessary background that will be required before pursuing
the space-group convolution method for computing lattice
conformational statistics. Section 2 will describe the space-
group convolution method in detail for phantom torsional ran-
dom walks. Section 3 discusses some important details for the
lattices of most common interest. Section 4 modifies the basic
approach to account for obstacles and pairwise torsional ener-
getic effects. Section 5 presents numerical results. This is
followed by a discussion of computational performance and
our conclusions.

1.1. Literature review

Random and self-avoiding walks on lattices arise in a
number of fields. One notable example is polymer theory.
The study of the statistical behavior of long polymer chains
on lattices began approximately 50 years ago, shortly after
the introduction of the Monte Carlo sampling method [16].
Polymer science at that time had already existed for decades
[7]. Several models were developed through the decades of
the 1950s and 60s, which are summarized in Flory’s classic
book [5]. The study of the statistics of polymers [8e10] be-
came a matter of interest because of the wide range of proper-
ties that they have. Polymers have many interesting and useful
mechanical properties, which are due to their molecular struc-
ture [6]. Some of these properties, such as rubber elasticity [6]
and the toughness and ductility of semi crystalline polymers,
depend on the ensemble behavior of polymer chains that exist
in a wide variety of conformations [6]. It is therefore a matter
of importance to study the structure and statistics of ensembles
of long polymer molecules. The size of a polymer chain is one
of the fundamental quantities in the study of its structure. The
mean-square end-to-end distance of a polymer chain is one
description of the size of a polymer chain [6].

A polymer molecule is composed of monomers which typ-
ically consist of a central carbon atom and atoms of other
elements such as N, H, etc. These monomers are connected
with each other by covalent chemical bonds, thus forming
the polymer chain. Let ri�1 denotes the position of the central
carbon of the ith monomer and i¼ 1,., nþ 1 enumerate the
nþ 1 monomers. Then the bond vector, bi¼ ri� ri�1, con-
nects two central carbon atoms of sequential monomers.
Summing the n bond vectors of Nþ 1 identical monomers
in the chain we find the end-to-end distance vector r [6]:

r¼
Xnþ1

i¼1

ri� ri�1: ð1Þ

The corresponding end-to-end distance is r¼ jrj. The mean-
square end-to-end distance hr2i is very important in order to
understand the structure of the polymer [6]. Likewise, other
important physical quantities are related to the distribution
of values of r, denoted here as p(r). Many simulation methods
have been developed in order to obtain information about how
p(r) evolves for polymer chains. These methods have been ap-
plied to many models of polymer chains. Our study focuses on
the Random Walk (RW) on lattices.

Let D2
r denotes the relative mean-square fluctuation of r2

defined by D2
r ¼ ðhðr2Þ2i � hr2i2Þ=hr2i2 [6]. A serious prob-

lem in computer simulation of polymers is the lack of self-
averaging:

D2
r K0 as n/N; ð2Þ

but it is desirable to have D2
r /0 as n / N [6]. Eq. (2) has led

many researchers to use simplified models such as lattice ran-
dom walks [18,19], and therefore estimate more closely the
real values of hr2i. These values can be approximated well
only for simple lattice models for a high number of indepen-
dent conformations [20,15]. These methods started with the
pioneering work of Wall and collaborators [13,31] on single
chains and subsequently were extended to more complex sys-
tems [12,14]. Furthermore analytical theories using lattice
models [16,21,22,6] are based on a lattice descriptions
[23,6], such as excluded volumes or Self-Avoiding Walks
(SAWs) [11]. The computational cost for brute-force enumer-
ation is high, hence not practical [24e28,11]. In any case, lat-
tice models are ideal for sampling methods and algorithms
such as the slithering snake algorithm [29,30], the pivot algo-
rithm [32,33], the conformation bias algorithm [33,6] and the
chain breaking algorithm [34,35]. The main purpose of these
algorithms is to approximate the true polymer conformation.
One characteristic of polymer chains is that repulsive forces
do not allow them to self-intersect or two different monomers
to occupy the same position in space [6]. So an improved
model of polymer simulation is the Non-Reversal-Random-
Walk (NRRW) [17], in which immediate reversals are not
allowed but sequentially nonadjacent self-intersections are
allowed.

A subtle distinction exists between NRRWs and more kine-
matically realistic models of polymers in which only rotational
(torsional) moves are allowed, as is shown in Fig. 1. For exam-
ple, in a cubic lattice a random walk can move in six direc-
tions. The NRRW would allow five directions (all but the
direction pointing backwards along the direction of the current
move). The torsional model would allow only four directions
(those which are orthogonal to the direction of the current
move). The distinction between NRRW and torsional models
is really only important for square and cubic lattices, since
there is no way for consecutive bonds to be parallel in the
hexagonal and tetrahedral lattices. If the number of rotational
moves available around each bond vector is z, then the total
number of conformations that can be generated by a torsional
random-walk model is zn [36]. Another issue that arises in
polymer simulations is how the presence of excluded volume
changes the distribution of the end-to-end distance. Monte
Carlo simulations have been used to deal with these problems
[41,42].
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Fig. 1. A schematic description of lattice walks and attached reference frames: (a) random walk; (b) non-reversal; (c) torsional.
1.2. Overview of the torsional random-walk model

Let us denote the value of the bond angles (which are al-
ways constant) as qi¼ q for i¼ 1,., n. For the cubic and
square lattice the bond angle q is 90�, for the hexagonal lattice
it is 120�, and for the tetrahedral lattice it is 109.8�. The tor-
sion (dihedral) angles, {fi} in the cubic and tetrahedral lattices
have discrete values 0�, 90�, 180�, 270� and 0�, 120�, 240�, re-
spectively. Each of these 4 and 3 rotations represent a subgroup
of the point groups for the cube and of the tetrahedron, respec-
tively. As one progresses along the chain, the change in orien-
tation imposed by bond angles causes a ‘mixing’ of these
subgroups until all of the elements of the point group (group
of rotational symmetry operations) are realized. For the planar
lattices we do not have torsion angles. To each site of the lat-
tice we assign, apart from the Cartesian coordinates, a number
which corresponds to the orientation of the end of the random
walk with respect to the origin.

The way that polymer chains are modeled in the lattice is
that each lattice site is considered as the carbon atom of
a monomer, whereas the lattice segment (lattice edge) corre-
sponds to the polymer bond. The number of random walks
generated by an n-segment random walk increases exponen-
tially w.r.t n. It is therefore impossible to enumerate directly
all the conformations of a long polymer. We therefore need
some other methods. Popular methods that have been used
in the past and have been mentioned before are based on ran-
dom sampling. Although more sophisticated algorithms than
simple sampling have been proposed [4,38,39] these methods
do not capture the tails of certain kinds of pdfs in polymer
science [1].

Therefore a new method which is cost effective and does
not have the drawbacks of the previous methods is needed.
Such a method is presented in this paper: the method of crys-
tallographic space-group convolution. This method generates
the exact probability distributions for all the possible zn con-
formations of n-segment lattice chains corresponding to tor-
sional random walks. This is done without having to pay the
exponential cost of exhaustive enumeration. We use the tor-
sional random-walk model, at O(n3) computational cost for
two dimensional lattices (hexagonal, square) or O(n4) for three
dimensional lattices. We present an example here to illustrate
the great potential of this method. By using the crystallo-
graphic space-group convolution we can find, for the case of
the square lattice, the distribution describing where all of the
250¼ 1.12� 1015 torsional random walks of length 50 termi-
nate. This is computed in 9.74 s on a personal computer.
Fig. 2 shows the distribution, where darker dots mean more
walks terminating on that lattice site. In addition to that we
can use this method to find where all the possible walks of
50 segments terminate if we have an obstacle. For our case
the obstacle is a circle with center (�10,14) and radius 8. It
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Fig. 2. Distribution of the end of all the 50-segments random walks.
is worth mentioning that due to the existence of this obstacle
the number of walks of 50 segments is much less. For this
example, the number of walks when there is an obstacle is
1.0827� 1015. We normalize again over 250. The results are
shown in Figs. 2 and 3 to compare the distributions in these
two cases.
It is important to note that we generate probability distribu-
tions in pose (position and orientation) for all torsional random
walks of length 1 through n using our method. And whereas
statistics for rotationally isotropic walks can be computed us-
ing translational convolution in lattices, this is not what we are
doing. In torsional random walks, small local changes cause
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Fig. 3. Distribution of the end of all the 50-segments random walks with obstacle.
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large positional and orientational changes at distant points in
the chain. Hence, full space-group convolution is a more nat-
ural tool.

Attached to each individual random walk is a set of refer-
ence frames. The origin of each of these frames is located
on a lattice site that has a certain position w.r.t. x,y,z Cartesian
coordinates. Each frame also has a certain orientation w.r.t. an
inertial frame fixed at the origin. That orientation corresponds
to one of the rotational symmetries of the polygon or the poly-
hedron (i.e. the unit cell) from which the lattice is constructed.
All combinations of allowable translations and rotations form
a crystallographic space group.

Let G be the crystallographic space group of a lattice with
operation +, and let gi denote an arbitrary element of G. Each
gi can be represented as a homogeneous transformation matrix
consisting of a rotation Ri and translation ti

gi ¼ gðRi; tiÞ ¼
�

Ri ti

0T 1

�
: ð3Þ

Two rigid-body motions are composed as:

g1+g2 ¼ gðR1; t1Þ+gðR2; t2Þ ¼ gðR1R2;R1t2þ t1Þ ð4Þ

which is viewed clearly if we perform the matrix multiplica-
tion of g1 and g2, respectively. The inverse of gi is defined as:

g�1
i ¼

�
RT

i �RT
i ti

0T 1

�
: ð5Þ

The number of elements in space groups is infinite simply
because of the fact that the lattice dimensions can be extended
to infinity. However, it is possible to ‘‘periodize’’ the lattice to
make it finite, and this will not cause problems as long as the
period of the lattice is sufficiently large relative to the length
of the polymer. On the other hand, the number of elements
Ri in the group of rotational symmetries is always finite. Since
each gi describes ‘‘position and orientation’’, the word ‘‘pose’’
will mean any element gi.

1.3. The limitations of brute-force enumeration

In the brute-force case if one wants to move from the nth
frame attached to an n-segment random walk which is de-
scribed by the matrix gn to the nþ 1-st frame of an nþ 1-seg-
ment random walk then one could proceed as follows. First
find all the possible poses that the 1-segment random walk
on the lattice can reach using allowable torsional moves.
The number of these is taken to be 2 for the square and hexa-
gonal lattices, 3 for the tetrahedral and 4 for the hexagonal and
cubic when using the torsional model. As an example, con-
sider the tetrahedral lattice. The transformations defining local
moves are given by the matrices, g(1), g(2), g(3), that are de-
scribed with matrices of the same form as in Eq. (3), but we
use superscripts in place of subscripts to denote that these
are local transformations. In order to find all of the possible
2-segment NRRWs on the tetrahedral lattice we multiply each
of these transformations with each other, so we have nine
matrix multiplications. For the 3-segment random walk case
we have 27 multiplications and for the N-segment case we
have 3n multiplications. So for finding all the possible poses
for the nþ 1-st lattice site of the nþ 1-segment random
walk, brute-force enumeration would take the matrix products
gn+g(i), for i¼ 1, 2, 3 for each of the 3n values of the poses gn.
The orientation of this new pose will have the matrix represen-
tation RnR(i) and the position will be Rnt(i)þ tn. These are the
three possible nþ 1-segment random walks on the lattice
generated by adding to each of the preceding n-segment ran-
dom walks. The same procedure is followed for all the other
lattices. Clearly this is an exponential problem.

While the above approach is conceptually simple, the prob-
lem is that it is computationally not practical. In order to
circumvent the exponential complexity of brute-force enumer-
ation, this paper consists of the development of a convolution
for the square, the hexagonal, the cubic and the tetrahedral
lattices. For the square lattice we generate statistical quantities
exactly without enumerating exhaustively all the NRRWs for
up to n¼ 1023 (hence 8.9885� 10307) conformations and we
present the distributions of r. Then we present the distribution
of r values for one obstacle (in the polymer case obstacles can
be monomers of other chains or they can represent impenetra-
ble boundaries [37]). This is done for n¼ 50, 100, 150, 200
with and without accounting for the obstacle. For the hexago-
nal lattice we do the calculations for n¼ 50, 100, 150, 200 with
and without accounting for the obstacle. For the cubic lattice
we have two cases when we do not account for the obstacles.
When the effects of pairwise conformational energy terms
are disregarded and when they are taken into account.
For the former case we find exact statistical quantities for all
possible 450, 4100 possible NRRWs in 220 s on a PC and we
present the distribution of r. Then we modify the convolution
for three different obstacles and we present again the dis-
tribution of r. In the case when the effects of conformational
energy are taken into account the computational cost is multi-
plied by 162¼ 256. This will be clear by the analysis of the
cubic lattice, where we present the same distribution as before
and we observe the differences. When accounting for the
obstacles we make the calculations for n¼ 15 without ac-
counting for torsion angles. For the tetrahedral lattice for the
case that we do not have obstacles we make the calcula-
tions for n¼ 50, 100 when we are not taking into account the
torsion angles and for n¼ 30 when we are. We calculate the
distribution of r when we have obstacle for n¼ 50, without
accounting the torsion angles. When taking into account the
affects of conformational energy the cost is multiplied
by 34¼ 81.

The new feature of this method is that it can generate exact
statistics (to within machine precision) corresponding to all of
the exponential number of conformations in a polynomial
amount of time without having to resort to sampling only
a small subset of conformations. This becomes more and
more convenient when the number of segments increases.
While previous methods relied on sampling, the new method
finds statistics for all the possible conformations in a very
short time.
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2. Overview of the space-group convolution method

Firstly we begin by explaining the geometric intuition of the
method of generalized convolution of functions on space
groups of a discrete lattice assuming that we have three frames
of reference O1, O2 and O3 with origins located at lattice points,
and orientations that are elements of corresponding point
groups. We view O1 as being fixed, O2 as moving with respect
O1, and O3 as moving with respect O2, as in Fig. 4 [1e3,39].

Assume that g1 is the homogeneous transformation (i.e.,
a matrix of the form in Eq. (3)) that describes the pose (position
and orientation) of O2 with respect to O1, g2 is the one that de-
scribes the pose of O3 with respect to O2. Then the pose (posi-
tion and orientation) of O3 with respect to O1 is described by
g3¼ g1+g2. Then g2¼ g1

�1+g3. At each lattice site is attached
a frame of reference. On the n-segment random walk the orig-
inal lattice site is the one to which the inertial frame (identity
motion) is attached. Working on lattices so, ensures us that we
move g1 and g2 over a finite number of different poses. Since g1

and g2 move through a finite number of different poses, we can
define fn1

as a function which assigns as a value the frequency
of occurrence of the distal end of a walk of length n1 reaching
g1, while the proximal end is rooted at the inertial frame. Sim-
ilarly fn2

can be defined as the function which takes as a value
the frequency of g2. In general fni

ðgÞ denotes a space-group
function, where the subscript ni stands for the number of seg-
ments of that particular random walk. It takes as an input the
position and orientation g and gives as an output the number
of times that position and orientation is reached by the distal
end of an ni-segment random walk on that specific lattice.
Our main target is to derive the distribution of g3 frames based
on the knowledge of g1 and g2. The methodology followed is
the natural outcome of the reasoning described above and pro-
ceeds as follows. Step 1: evaluation of fn1

¼ fn1
ðg1Þ. Step 2:

evaluation of fn2
¼ fn2

ðg2Þ ¼ fn2
ðg�1

1 +g3Þ. Step 3: weighted
multiplication of fn2

ðg�1
1 +g3Þ by the number of frames at g1,

which is fn1
ðg1Þ. Step 4: sum over all of these contributions

O1

O2

O3

g1

g2

g3

Fig. 4. Frames of reference.
fn1þn2
ðg3Þ ¼

�
fn1
� fn2

�
ðg3Þ ¼

X
g1˛G

fn1

�
g1

�
fn2

�
g�1

1 +g3

�
: ð6Þ

Here G denotes the full crystallographic space group, but in
practice since the functions fni

diminish to zero outside of
a small range, the sum is taken over a finite number of group
elements. Since each sub-chain has zn1 and zn2 states, respec-
tively, the set of all states of the combined walks of length
n1þ n2 is zn1 ,zn2 ¼ zn1þn2 . The function resulting from the
convolution of fn1

ð,Þ and fn2
ð,Þ, respectively is the distribution

function for the whole ensemble fn1þn2
ðg3Þ ¼ ðfn1

� fn2
Þðg3Þ.

Moreover, this way of thinking can be applied to walks that
emerge from composing more than two walks stacked on
top of one another. For example if for walks that are stacked
the distribution of the lower two is given by fn1

� fn2
and the

distribution of the upper by fn3
� fn4

, then the distribution of
the concatenation of segments is given by fn1þn2þn3þn4

¼ ðfn1
�

fn2
Þ � ðfn3

� fn4
Þ ¼ fn1

� fn2
� fn3
� fn4

because the operation of
convolution is associative. For n1þ n2þ/þ nK segments it
holds that fn1þn2þ/þnK

ðg3Þ ¼ ðfn1
� fn2
�/fnK

Þðg3Þ. This last
equation shows the procedure that we will follow in our codes
to find the probability distribution of an n1þ n2þ/þnK-seg-
ment random walk, where fni

for i¼ 1, ., K is the function
of ni-segment random walk, where ni is an arbitrary number
of segments [1e3,39].

If one compares the computational complexity of this
method with the brute-force enumeration of ensemble states
one concludes that this method is computationally much
more efficient. To justify this conclusion, we begin by assum-
ing an arbitrary chain consisting of K sub-chains (each one
consisting of an arbitrary ni, i¼ 1, 2, ., K number of seg-
ments). The computational cost of enumerating conformations
of each sub-chain is zn1 ;.; znK . Brute-force enumeration of all
the conformations of the total chain is Oðzn1þn2þ/þnK Þ. In con-
trast in our new approach, functions fni

are used for the de-
scription of the distribution for each sub-chain fn1

;.; fnK
at

a cost of Oð
PK

k¼1 znK Þ. To find the frame distribution of the
whole ensemble we perform K� 1 convolutions [1e3,39].

The cost of these convolutions depends upon the dimension
of the lattice, i.e., D¼ 2, 3. The number of lattice points reach-
able by the distal end of an n-segment random walk is O(n2)
and O(n3) for planar and spatial lattices, respectively. By con-
sidering the convolution of two adjacent functions we have that
the numerical computation of the convolution sum evaluated at
a single point in the support of ð fni

� fniþ1
Þ becomes a sum over

all lattice motion group elements in the support of fni
. This cal-

culation must be performed for all lattice motion group ele-
ments in the support of fni

� fniþ1
, so all computations required

are OðconvolutionÞ ¼ OðQni
,Qniþ1

Þ. Here Qni
and Qniþ1

are
the number of lattice motion group elements in the support
of fni

and fniþ1
, respectively. Since Qni

¼ OðnD
i Þ and D is a con-

stant, the computational cost of K� 1 convolutions is a polyno-
mial in K. The order of this polynomial depends on D [1e3,39].

In our implementation the chain is broken into n individual
bonds, i.e., K¼ n and ni¼ 1. Thus the frame distribution
fn( g3) is calculated from n identical ‘‘one-step walk’’ functions
as an n-fold convolution fn¼ f1

(n)¼ f1 * f1 */* f1. The following
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series of convolutions are performed until we reach the desired
result f1

(2)¼ f1 * f1, f1
(3)¼ f1

(2) * f1, ., f1
(n)¼ f1

(n�1) * f1. Qi which
is the number of points in the support of f1 is always a constant
independent of n so the total computational cost becomes
c1$1Dþ c2$2Dþ/þcn�1$(n� 1)D¼O(nDþ1) [1e3,39].

The above approach is not the only one that can be taken.
For example, it is possible to compute a cascade of the form
f2¼ f1

(2) and then f4¼ f2 * f2, f8¼ f4 * f4, etc. using log2 n con-
volutions. Each of these convolutions can be computed using
the FFT for periodized lattices in O(PD log P) arithmetic oper-
ations where the number of sample points in the support of the
resulting function is P¼O(ni) in each translational direction
and ni is the length of the resulting walk. However, in practice
iteratively performing one-step convolutions is faster and al-
lows us to handle obstacles. This is not true for the cascaded
approach described above [1e3,39].

Having two frame functions the definition of the convolu-
tion in Eq. (6) can be written for the spatial case as:

fn1þn2
ði0; j0; k0;m0Þ ¼

X
i;j;k;m

fn1
ði; j; k;mÞ,fn2

ði00; j00; k00;m00Þ ð7Þ

where i, j, k, i0, j0, k0 stand for the position, whereas m, m0 stand
for the orientation. For the planar case we have i, j, i0, j0 for the
position and k, k0 for the orientation. By combining Eqs. (5)e
(7) we see that:

2
4 i00

j00

k00

3
5¼ R�1

i

�
tj � ti

�
: ð8Þ

3. Example lattices

In this section we examine some of the details required to
implement the space-group convolutions for torsional random
walks in four different kinds of lattices: square, hexagonal,
cubic and tetrahedral.

3.1. Square lattices

The 1-segment torsional random walk in the square lattice
has two possible poses at its distal end relative to its proximal
end (see Fig. 5). For the 2-segment torsional RW we will have
22¼ 4 possible poses and for the k segment torsional random
walk we have 2k possible poses. The one-step motions and
elements of the space group for the unit square lattice are,
respectively, of the form:

gðmÞ ¼

2
4 0 �m �m

m 0 0
0 0 1

3
5 and g¼

2
64

cos
�

kp
2

�
�sin

�
kp
2

�
i

sin
�

kp
2

�
cos
�

kp
2

�
j

0 0 1

3
75

ð9Þ

where m¼�1, k¼ 0, 1, 2, 3 and i, j are independent integers.
Applying convolution of functions of motion on the square lat-
tice we just have to follow the notation of Eqs. (6) and (7), by
plugging in the elements of the square lattice group.
3.2. Hexagonal lattices

We do the same thing for the hexagonal lattice (see Fig. 6):
we consider the length of each edge of the hexagons on the lat-
tice to be unity. First we have to find the rotation matrices
which represent the symmetries of the hexagon. These are
given by Rzðkp=3Þ for k¼ 0, 1, 2, 3, 4, 5 where Rz(a) denotes
counterclockwise rotation around the z-axis by angle a. The
matrices Rzðkp=3Þ describe the planar rotational symmetries
of the hexagon. For the planar hexagonal lattice the one-step
motions and elements of the space group are, respectively,
of the form:

gðmÞ ¼

2
664

cos
�

mp
3

�
�sin

�
mp
3

�
�m

ffiffi
3
p

2

sin
�

mp
3

�
cos
�

mp
3

�
1
2

0 0 1

3
775

and g¼

2
664

cos
�

kp
3

�
�sin

�
kp
3

� ffiffi
3
p

2
i

sin
�

kp
3

�
cos
�

kp
3

�
1
2
j

0 0 1

3
775

ð10Þ

for m¼�1, k ˛ [0,5], i, j are integers. For computing i we
have to know the number of segments this walk refers to. If
n is the number of segments then i¼� n:n. For j, things are
slightly more complicated. For n even and n> 3 the minimum

Fig. 5. Evolution of the two segments on the square lattice.

Fig. 6. Evolution of the two segments on the hexagonal lattice.
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and the maximum values of j are (�3nþ 6)/2 and 3n/2,
respectively. For n odd and n> 3 the minimum and the max-
imum values of j are (�3nþ 4)/2 and (3n� 1)/2, respectively.
The rest of the values of j are the values reached by m< n-seg-
ment random walks. For n¼ 1, 2, 3 the minimum and maxi-
mum values for j are 1, 0, �2 and 1, 3, 4, respectively. To
compute the convolution on the hexagonal lattice we just
have to follow the notation of Eqs. (6) and (7), by substituting
the elements of the hexagonal lattice group.

3.3. Cubic lattices

For the cubic lattice case (see Fig. 7), the rotation matrix
describing the orientation of a frame attached to bond vector
iþ 1 relative to the frame attached to bond i is written as:

Ri ¼

2
4�cos qisin fi sin fi sin qicos fi

�cos qicos fi �cos fi sin qisin fi

sin qi cos qi 0

3
5 ð11Þ

where qi ¼ �p=2.
The elements gi of the cubic lattice space group are given

by:

gi ¼
�

Ri e3

0T 1

�
; e3 ¼

2
40

0
1

3
5; ð12Þ

or

gi ¼

2
664

0 sin fi �cos fi 0
0 �cos fi �sin fi 0
�1 0 0 1
0 0 0 1

3
775 ð13Þ

for fi ¼ 0; p=2; p; 3p=2.
The 24 rotational symmetry operations for the cube are

well known. The four poses of the 1-segment random walk

−4
−2

0
2

4

−4
−2

0
2

4
−3

−2

−1

0

1

2

3

x-direction

distribution without obstacle

y-direction

Fig. 7. Cubic lattice.
for the cubic lattice are found as follows. We first translate
along the z-axis by one unit, then we rotate around the new
y-axis (which happens to be the same with the previous
y-axis) by p=2 and then we rotate around the new x-axis
either by 0, or p=2, or p, or 3p=2. We find the function of
n-segment random walk by using the technique of the crystal-
lographic convolution in the cubic Lattice. Again the
definition of the convolution in the cubic lattice is achieved
by plugging in the elements gi of the cubic lattice crystallo-
graphic space group into Eq. (6), where n1¼ 1, n2¼ 1, 2, .,
n� 1.

3.4. Tetrahedral lattices

The tetrahedral lattice has as vertices centers of tetrahedra.
Each lattice site in the tetrahedral lattice is adjacent to four
other lattice sites. So proceeding from the nth lattice site of
an n-segment random walk to the nþ 1-st lattice site of the
nþ 1-segment random walk we have four possible choices
which reduce to three for the sake of not allowing immediate
reversals. The group elements of the tetrahedral crystallo-
graphic space group are given as in Eq. (3). The matrices Ri

are the rotational symmetry operations for the tetrahedron of
which these are 12. The Cartesian coordinates of the tetrahe-
dral lattice will be integers if we inscribe the tetrahedron in
a cube of edge length 2, see figure [49]. For finding the repre-
sentations of the 12 symmetries of the tetrahedron we take the
3� 3 identity matrix as the representation of the identity rota-
tions. Then we rotate around the three vectors, which connect
the origin with the centers of the equilateral triangles, which
the vertices of the original tetrahedron form, about
2p=3; 4p=3. By the term original tetrahedron we mean the tet-
rahedron which we inscribe in the cube. Thus we take the first
7 rotations of the tetrahedron. By combining the seven rota-
tions with each other we obtain the remaining five. The origin
is the center of this tetrahedron. The crystallographic motion
group convolution on the tetrahedral lattice is defined as
in Eq. (7) over the space-group elements of the tetrahedral
lattice. We have to note that

2
4 i00

j00

k00

3
5¼�R�1

i

�
tj � ti

�
ð14Þ

due to the fact that the tetrahedral lattice is two definable [50].
If i, j, k, m of Eq. (7) refer to a function of odd number of seg-
ments then we have the negative sign in Eq. (14), otherwise we
have the positive one. This can be explained as follows. The
tetrahedral lattice sites are centers of one tetrahedron and ver-
tices of another one. The tetrahedron for which the lattice site
is the center looks down(up), whereas the tetrahedron for
which the lattice site is a vertex looks up(down). This means
that the tetrahedral lattice is periodic for every two segments
and subsequently for every even number of segments thus
for fni

having an even number of segments we have the positive
sign holding in Eq. (14). For odd number of segments we have
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the opposite orientation every time, which is why we have
negative sign.

For the case of the tetrahedral lattice the elements gi of the
spatial lattice motion group are given by:

giðfi;qiÞ ¼

2
664
�cos fi �sin ficos fi sin fisin qi 0
sin fi �cos ficos qi cos fisin qi 0

0 sin qi cos qi 1
0 0 0 1

3
775

ð15Þ

where qi z 109.8�.

4. The effects of obstacles and pairwise conformational
potential energy

In this section we modify the basic space-group convolu-
tion approach presented in Section 2 to generate probability
distributions in the case when there are obstacles and pairwise
energy effects between sequentially adjacent bonds.

4.1. Accounting for obstacles

One of the goals of this paper is to find the frame distribu-
tion function for the distal end of a lattice random walk for all
the lattices of interest (square, hexagonal, cubic and tetrahe-
dral) with and without obstacles. This is achieved by defining
the borders of the obstacle on the lattice. When the frame dis-
tribution function of the n-segment random walk is convolved
with that of a 1-segment random walk the frame distribution
function of the nþ 1-segment random walk results. Then we
examine whether the result lies in the excluded volume. If it
does, we set the value to zero at that point. To make it more
clear, Eq. (6) is modified as:

fnþ1ðgÞ ¼
X

h

fn

�
h
�
f1

�
h�1+g

�
: ð16Þ

Note that in Eq. (16), we calculate the convolution over the
support of fn. That is because for the obstacle case the order
matters. A simple example is that while g¼ (i0, j0, k0, m0)
(see Eq. (7)) may lay far beyond the obstacle, yet h�1+g
may lay inside it. Thus to ascertain the validity of our calcula-
tions we set h�1+g to be the support of f1. When the values of
i0, j0, k0 lay in or on the obstacle then the result of the convo-
lution given by Eq. (16) is set to zero at those values. If this is
done one step at a time, the full set of obstacle-avoiding con-
formations will be generated exactly. Note that this is different
than nullifying the value of an n-fold convolution at the end.
The computational cost of this calculation is high. That is be-
cause the elements of the support of fnþ1 are bound by a cube
of volume (2nþ 3)D, while the elements of the support of fn
are bound by a cube of volume (2nþ 1)D. Thus we need to
find a more efficient way of dealing with the obstacles case.
The way to do this is the following: a convolution sum of
the form above can be written in the following equivalent
ways:
ð fn � f1ÞðgÞ ¼
X
z˛G

fn

�
z�1
�
f1

�
z+g
�
¼
X
k˛G

fn

�
g+k�1

�
f1

�
k
�

ð17Þ

where the substitutions z¼ h�1 and k¼ h�1+g have been
made, and the invariance of summation under shifts and inver-
sions is used. In other words, we use the general facts that
X
h ˛G

f ðhÞ ¼
X
h ˛G

f
�
h�1
�
¼
X
h ˛G

f ðg+hÞ ¼
X
h ˛G

f ðh+gÞ

for any g ˛ G. This is true because we sum over all the ele-
ments of the group. In our formulation, we seek to compute
fnþ1( g) from fn( g) and f1( g). Due to the invariance of summa-
tion under the transformations discussed above, we can use the
second equality in Eq. (17) to write:

ðfn � f1ÞðgÞ ¼
X
k˛G

fn

�
g+k�1

�
f1

�
k
�
:

In other words, we can still use the small nature of the support
of f1 for computational advantage. This is important because
when computing convolutions in the presence of obstacles,
we will use this form. Thus the computational cost for the
distribution functions of all torsional walks of length up to n
is still O(nDþ1).

In Section 5 of this paper we find the frame distribution
function for the distal end of the chain and the function p(r)
when we have an excluded volume and compare it to the cor-
responding distribution function when there is no excluded
volume. For the square and hexagonal lattices the obstacle
in the numerical examples will be a circle of radius 8 and cen-
ter (�10,14). For the three dimensional lattices the excluded
volumes would be a sphere with center (�10,14,13) and radius
8 for the tetrahedral lattice and a sphere with center (�5,5,4)
and radius 4 for the cubic lattice. A spherical obstacle was also
used in Ref. [42].

4.2. Pairwise conformational energy

If one were to consider all self-interactions within a polymer
modeled as a lattice torsional walk, the probability distribution
of end frames would be written as:

~f EðgÞ ¼ fEðgÞ=Z where fEðgÞ ¼
X

f˛IðgÞ
exp

�
�EðfÞ

kBT

�
: ð18Þ

Here f is the vector of torsion angles, E(f) is a conforma-
tional energy function, and I( g) denotes the finite set of all tor-
sion angles (see Fig. 8) that defines chains rooted at the global
reference frame and ending at g. This is a Boltzmann-weighted
distribution where kB is the Boltzmann constant and T is
the absolute temperature measured in Kelvin. The partition
function is defined as:

Z ¼
X

f

exp

�
�EðfÞ

kBT

�
: ð19Þ

For pairwise potentials one does not enumerate all conforma-
tional states by brute force to compute Z. Instead, Flory’s
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method [5] p. 68e69 can be used, or we can sum fE( g)
over all values of g. Note that ~f EðgÞ is normalized as a prob-
ability density in this section, whereas f( g) was a number
density in previous sections of the paper. fE( g) by itself is
neither a true number density, nor is it a probability density,
though it is an important quantity to compute along the path
of finding ~f EðgÞ. When there is no ambiguity, we will drop
the subscript E.

Unfortunately, the calculation of fE in Eq. (18) for the most
general energy function, E(f), is a problem requiring an expo-
nential amount of computation in the chain length. In contrast,
one of the simplest kinds of conformational energy function
models only nearest neighbor interaction and leads to a separa-
ble partition function. In order for us to generate the statistical
information needed to weight the relative occurrence of poly-
mer conformations in a statistical mechanical ensemble we use
the Rotational Isomeric State (RIS) model. Two basic assump-
tions to the RIS model have been developed by Flory:

� The conformational energy function for a chain molecule
is dominated by interactions between each set of three
groups of atoms at the intersection and ends of two adja-
cent bond vectors. Hence the conformational energy func-
tion can be written in the form EðfÞ ¼

Pn�1
i¼1 Eiðfi�1;fiÞ,

where f¼ (f0, f1, ., fn�1) is the set of torsion angles.
� The value of the conformational weighting function

expð�EðfÞ=kBTÞ is negligible except at the finite number
of points where E(f) is minimized. For our case we do not
have to find the local minima since we are referring to
lattice.

If we include only the effects of pairwise conformational
energy, then the distribution function describing the end posi-
tions and orientations of a chain can be written in the form:

f ðgÞ ¼
X

f ˛IðgÞ
exp

�
�
Pn�1

i¼1 Eðfi;fiþ1Þ
kBT

�
:
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Fig. 8. Torsion angles.
This is a form that is amenable to computation using a modi-
fied version of the space-group convolution method presented
earlier. After performing these convolutions we can divide by
Z to obtain a probability density.

The generalized lattice motion group convolution technique
can be made to conform with the RIS assumptions and pro-
vides a numerical tool to generate the statistical distributions
of interest. One can write the conformational energy function
as EðfÞ ¼

Pn�1
i¼0 Eiðfi;fiþ1Þ. The frame distributions for the

lower and upper segments are generated as before. These
frame distributions are not only function on G, but also depend
on the bond angles contributing to the energy of interaction
between the two chain segments. The brute-force method for
finding frame distribution function requires initially to define
an energy matrix 3� 3 for the case of the tetrahedral lattice
and for 4� 4 the case of the cubic one. The entries of this ma-
trix are given by expð�Eðfi;fiþ1Þ=kBTÞ, where fi and fiþ1

are the pairwise sequential torsion angles of the chain depicted
in Fig. 8.

In the case of a chain with sequentially pairwise interac-
tions, Eq. (7) can be written as:

fn1þn2
ðg;f0;fnÞ ¼

X
fi

X
fiþ1

fn1
ðg;f0;fiÞ

� fn2
ðg;fiþ1;fnÞe

�Eðfi ;fiþ1Þ
kBT ð20Þ

Which can be rewritten more explicitly as:

fn1þn2
ðg;f0;fnÞ ¼

Xz�1

j¼0

Xz�1

k¼0

X
h ˛G

fn1
ðh;f0;f

j
iÞfn2

� ðh�1+g;fk
iþ1;fnÞe

�E

�
f

j
i
;fk

iþ1

�
kBT : ð21Þ

The statistical weight matrix, W, is defined to have entries of
the form:

wj;k ¼ exp
�E
�
f

j
i;f

k
iþ1

�
kBT

where j, k ˛ [0,1,2] for the tetrahedral case and j, k ˛ [0,1,2,3]
in the cubic case. For our numerical studies the entries of these
matrices were chosen arbitrarily. The only constraint in this
choice is that the matrix should be symmetric and have
positive entries.

For the case of the tetrahedral lattice the matrix is of the
form:
2
40:8 0:2 0:3

0:2 0:5 0:4
0:3 0:4 0:7

3
5 ð22Þ

whereas for the cubic lattice the matrix is:
2
664

0:3 0:04 0:25 0:09
0:04 0:2 0:75 0:01
0:25 0:75 0:7 0:8
0:09 0:01 0:8 0:9

3
775: ð23Þ
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For the cubic lattice fj, fi take four values: 0; p=2;
p; 3p=2, whereas for the tetrahedral lattice they take the
three values: fj, fi: 0; 2p=3; 4p=3.

The definition of the convolution now incorporating the
effects of the conformations are more complicated since the
frame distribution functions have as arguments not only
the positions and orientations but also the pair of the first
and last torsion angles in the chain. Since each of the torsion
angles takes 3 and 4 values for the tetrahedral and the square
lattice, respectively, then the size of the array describing the
function will be 9 and 16 times the size without incorporating
the conformational effects, respectively. The definition of the
convolution for this case is a modified version of Eq. (21).
The values of the torsion angles for the cubic lattice are 0,
1, 2, 3. So for each pair of angles f0, f1 of the fn1þn2

function
we have 9 or 16 convolutions for the tetrahedral or the square
lattice. Hence overall we have 81 or 256 space-group convolu-
tions. Hence the time that it takes to compute all the possible
conformations of the ensemble of the n-segment random walk
on the tetrahedral or on the square lattice is 81 or 256 times
longer when incorporating the conformational energy effects
than when not.

5. Numerical results

In this section the outcome of our work is presented. By ap-
plying the space-group convolution method we obtain in very
short time the pose probabilities for the distal ends of all of the
possible n-segment torsional random walks on each lattice.
What this means is that the ensemble properties of the polymer
chain approximated by lattice models can be described more
easily and faster. After first neglecting excluded volumes
and assuming that all conformations have the same energy
we obtain initial results. Then we proceed by assuming an ex-
cluded volume in the shape of circle or sphere (depending on
whether the lattice is planar or spatial) and after obtaining
these results we assume the case where each conformation
has different energies (when taking into account the effects
of different pairwise torsion angles).

It is important to mention that we validated the results for
all the cases. For example, for the case where we do not have
obstacles or energy effects we compared for a small number of
segments the results of the convolution with the results of
brute-force enumeration. In all cases we have an exact match.
For larger number of segments when we cannot compare
with brute-force results, the condition that

P
g˛G fni

ðgÞ ¼ zn

for n being the number of segments of the torsional random
walk was checked for the case of no obstacles or pairwise in-
teractions. This is a necessary condition for the method to be
correct. For the case that we have either obstacles or torsion
angles effects or both, we compared, for small number of
segments, the lattice convolution results with the brute-force
results and we had a complete match.

Once the pose probability distribution is found, it is easy to
find distributions of end-to-end distance. We first marginalize
(sum) over orientations to obtain a distribution in end-to-end
positions. Then the distance of each lattice point from the
origin is recorded together with its corresponding number
density as an ordered pair (distance, density). Each time
a new lattice point is encountered with a distance from the
origin that has been recorded previously, this density is added
to the previous value. The resulting array is sorted by distance
from smallest to largest. Bins of size 2 (apart from the case of
the hexagonal lattice which is a size of 5) bond lengths are
used to define histograms, and density values corresponding
to distances that fall within each bin are added.

5.1. Square lattices

The next step is to present the results. For the case of the
square lattice for n¼ 50, 100, 150, 200 with and without tak-
ing into account the obstacle. The plot on Fig. 9 presents the
distribution of the Euclidean distances in the square lattice
by taking a bin size of 2. We count all the walks that end in
a distance greater or equal to 0 and less than 2 and we assign
to them to the zero distance. The same procedure holds for
m¼ 2, ., n, that is we count all the walks that end in a dis-
tance greater or equal to m� 2 and less than m and we assign
to them to the m� 2 distance. The first four graphs refer to the
no-obstacle case, whereas the rest refer to the obstacle case. It
is worth noting, how much the obstacle affects the distribution.
The percentage is taken over all possible 2n walks. The results
refer to (a) the distribution of 50 segments without obstacle,
(b) 100 segments without obstacle, (c) 150 segments without
obstacle, (d) 200 segments without obstacle, (e) 50 segments
with obstacle, (f) 100 segments with obstacle, (g) 150 seg-
ments with obstacle, (h) 200 segments with obstacle.

On the other hand, the percentage of times that the same
value of end-to-end lattice distance is reached for each case
is shown in Fig. 10. The results refer to: (a) the distribution
of 50 segments without obstacle, (b) 100 segments without
obstacle, (c) 150 segments without obstacle, (d) 200 segments
without obstacle, (e) 50 segments with obstacle, (f) 100 seg-
ments with obstacle, (g) 150 segments with obstacle, (h) 200
segments with obstacle.

It is interesting to observe how the ratio of number of tor-
sion walks generated by obstacle over the number of walks
generated without obstacle evolves as the number of segment
increases, see Fig. 11.

Table 1 shows us the mean-square end-to-end distances for
various number of segments of square lattice random walks
with and without taking the specific obstacle into account.

That is given by the formula hr2i ¼
Pn

i¼1 dir
2
i =
Pn

i¼1 di,
where di is the number of times each distance is reached
while ri is the actual Euclidean distance. It is worth mention-
ing that the mean-square end-to-end distance for the 1023 seg-
ments of non-reversal random walks for the square lattice is
hr2i ¼ 1023.

5.2. Hexagonal lattices

In the case of the hexagonal lattice we present the analo-
gous results for the same number of segments with and with-
out taking into account the same obstacle as in the case of the

2165lymer 48 (2007) 2155e2173



2166 A. Skliros, G.S. Chirikjian / Polymer 48 (2007) 2155e2173
0 10 20 30 40 50

0 10 20 30 40 50

0

10

20

30

pe
rc

en
ta

ge
 o

f
2N

 w
al

ks

0

10

20

pe
rc

en
ta

ge
 o

f
2N

 w
al

ks

0

10

20

pe
rc

en
ta

ge
 o

f
2N

 w
al

ks

0

10

20

pe
rc

en
ta

ge
 o

f
2N

 w
al

ks

0

10

20

pe
rc

en
ta

ge
 o

f
2N

 w
al

ks

pe
rc

en
ta

ge
 o

f
2N

 w
al

ks
pe

rc
en

ta
ge

 o
f

2N
 w

al
ks

percentage of walks over Euclidean distance percentage of walks over Euclidean distance

percentage of walks over Euclidean distance

percentage of walks over Euclidean distance

percentage of walks over Euclidean distance

percentage of walks over Euclidean distance

percentage of walks over Euclidean distance

percentage of walks over Euclidean distance

0 20 40 60 80 100

0 20 40 60 80 100

0 50 100 150

0 50 100 150

0 50 100 150 200

0 50 100 150 200

0

20

40

0

5

10

15

pe
rc

en
ta

ge
 o

f
2N

 w
al

ks

0

5

10

15

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Fig. 9. Distribution of Euclidean distances for the square lattice.
square lattice. The plot in Fig. 12 presents the distribution of
the Euclidean distances in the hexagonal lattice by taking
a bin size of 2. So for distances from 0 to 2 we have the value
at the 0 point, etc. The first four graphs refer to the no-obsta-
cle case, whereas the rest refer to the obstacle case. It is worth
noticing how much the obstacle affects the distribution. The
percentage is taken over all possible 2n walks. The results re-
fer to (a) the distribution of 50 segments without obstacle, (b)
100 segments without obstacle, (c) 150 segments without
obstacle, (d) 200 segments without obstacle, (e) 50 segments
with obstacle, (f) 100 segments with obstacle, (g) 150 seg-
ments with obstacle, (h) 200 segments with obstacle.

Table 2 shows us the mean-square end-to-end distances for
various number of segments of hexagonal lattice random walks
with and without taking the specific obstacle into account.

5.3. Cubic lattices

Now in the case of the spatial lattices not only do we have
higher computational complexity due to the additional di-
mension but we also have to consider whether all the confor-
mations have the same or different energy. The latter is much
more cost effective computationally than the former for
reasons that we described previously. Hence for the case
when assuming all the conformations have the same energy
we present results for n¼ 50, 100 segments (with and with-
out obstacles) while for the case when we assume different
energy states for different values of torsion angles we reduce
the number of segments to 30. Presented in the Fig. 13 are
the following: (a) the distribution of 50 segments without
obstacle, (b) 100 segments without obstacle, (c) 50 segments
with obstacle, (d) 100 segments with obstacle, (e) 30 seg-
ments without obstacle accounting for torsion angles (f) 30
segments with obstacle accounting for torsion angles. The
mean-square end-to-end distances are presented on Table 3.

It is worth mentioning that in the case of the obstacle
the number of random walks reduces to 1.2215� 1030

from 1.2677� 1030 for the 50-segments case, while for
the 100 segments case it reduces to 3.6472� 1056 from
1.6069� 1060.

5.4. Tetrahedral lattices

The results in Fig. 14 are: (a) n¼ 50 without obstacles, (b)
for n¼ 50 with obstacles, (c) for n¼ 30 without obstacle for
the case where different energy states have different weight,
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Fig. 10. Distribution of lattice distances for the square lattice.
(d) for n¼ 30 with obstacle for the case where different energy
states have different weight. The mean-square end-to-end
distances are presented in Table 4.
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It is worth mentioning that in the case of the obstacle the
number of random walks reduces to 7.1630� 1023 from
7.1790� 1023 for the 50-segments case.

6. Cost for making these calculations

Since the low computational cost is one of the main benefits
of this new method, we discuss it separately here. For the
square lattice, computing the distribution functions corre-
sponding to all conformations of all torsional walks of length
up to 200 is done in 75 s on a PC with Pentium 4 processor
(3.2 GHz), 1 GB RAM with Red Hat Linux as the operating
system. Computing the distribution functions for all walks

Table 1

Mean-square end-to-end distance e square lattice

Number of links/with

or without obstacles,

no energy state effect

Without obstacles With obstacles

50 50.0 47.2629

100 100.0 92.8864

150 150.0 141.7215

200 200.0 193.2174
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Fig. 12. Distribution of Euclidean distances for the hexagonal lattice.
up to 1023 segments takes 10 000 s. For the hexagonal lattice
we have the issue that in our calculation we introduce square
roots which slows down the calculations. Even so, the distribu-
tion functions for all walks up to length 200 segments are
computed in 6000 s, or less than 2 h. For the case of the spatial
lattices without considering the effects of torsion angles the
calculations are much slower than the planar case. In the cubic
lattice, computing the distribution functions for all walks up to
length 100 takes 40 000 s, almost 12 h. For the tetrahedral
case, the distribution functions for all walks of length up to

Table 2

Mean-square end-to-end distance e hexagonal lattice

Number of links/without obstacles

50 146.00

100 296.00

150 446.00

200 596.00

Number of links/with obstacles

50 111.3886

100 206.3397

150 295.6008

200 380.5064
50 take 7330 s. For the case when we take into account the
torsion angles, that time/cost is multiplied by 256 and 81,
respectively.

7. Comparison with classical results

In this section we demonstrate that our convolution method
produces the same results as classical formulations for the spe-
cial case of chains without sequentially proximal interactions
or obstacles. In particular, we consider the relative probability
of the most outstretched conformations, ring closure probabil-
ities, and moments of both end-to-end distance and radius of
gyration.

For the specific case of the non-reversal walks of the cubic
lattice the normalized probability that the most distal points
are reached can be rewritten as 5=5n. This means that for
each n-non-reversal walk the maximum distance is reached
only by 5 walks. That is true and verified. In addition to
that, the maximum distance value should always be n (since
l¼ 1 for the cubic lattice case). This has also been verified
in our data.
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Fig. 13. Distribution of Euclidean distances for the cubic lattice.
We also compared our formulation with the Zimm result
[44], and the JacobsoneStockmayer result [43]. Direct com-
parison shows asymptotic convergence to those results. If we
modify the Zimm formulation, which was derived for the
case of a freely jointed chain, by taking averages over the
accessible states in the lattice rather than a uniform spherical
average, our results match exactly with this modified Zimm
formulation for polymers of all lengths. The JacobsoneStock-
mayer result is based on the assumption of a Gaussian chain,
which is also valid only asymptotically.

Table 3

Mean-square end-to-end distance e cubic lattice

Number of links/without obstacles neglecting

energy states

Without obstacles

50 50.00

100 100.00

Number of links/with obstacles neglecting energy states

50 47.4649

100 87.1115

Number of links/without obstacles different energy states

30 51.999

Number of links/with obstacles different energy states

30 51.2488
The details of how to calculate classical quantities of inter-
est using our methodology, and comparison with the classical
results are presented in the following subsections.

7.1. Comparison with the JacobsoneStockmayer result

Concerning the JacobsoneStockmayer result [43], we have
the fraction of chain configurations permitting ring closure
that is given by the formula:

P¼
�

3

2pnn

�3=2
us

b3
ð24Þ

Eq. (24) gives the probability for the conformations with r¼ 0.
In Eq. (24) the quantity us is a small volume that other atoms
occupy if one atom is fixed when a ring is formed. The quan-
tity b is the effective link length. Since we are dealing with lat-
tices, the effective link length is always a constant and the
volume us that we referred to above is constant too, and we
can say that us¼ b3 thus (us/b

3)¼ 1. Furthermore, n in Eq.
(24) is the number of chain atoms in monomer units which
in our case (since we are dealing with lattice random walks
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and we count each lattice site as one unit) we take n¼ 1.
Therefore, Eq. (24) is reduced to:

P¼
�

3

2pn

�3=2

ð25Þ

In Fig. 15 we present the probability of r¼ 0 for each value
of n for both the method of the JacobsoneStockmayer and the
convolution for the tetrahedral lattice. The thicker line
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Fig. 14. Distribution of Euclidean

Table 4

Mean-square end-to-end distance e cubic lattice

Number of links/without

obstacles neglecting energy states

Without obstacles

50 295.5000

Number of links/with

obstacles neglecting energy states

50 78.7260

Number of links/without

obstacles different energy states

30 166.8206

Number of links/with

obstacles different energy states

30 187.9892
represents the JacobsoneStockmayer value. As we see ini-
tially there is a small divergence but as n increases the differ-
ence becomes indistinguishable. Thus the probability of ring
closure for the tetrahedral lattice follows the JacobsoneStock-
mayer result. The same holds for the cubic lattice.

7.2. Comparison with the Zimm result

According to Ref. [44] the mean-square radius of gyration
of chains with r¼ 0 is R2¼ b2N/12, where R2 is the mean-
square radius of gyration of the rings and b2N is the mean-
square end-to-end distance. That is the average mean-square
end-to-end distance of an n-segment random walk is 12 times
the mean-square radius of gyration of the rings. In our graph
we show that for the tetrahedral lattice the ratio (mean-square
end-to-end distance over mean-square radius of gyration of
rings, that is, b2N/R2) approaches the number 12.

It is well known [5,36,39] that the mean-square radius of
gyration is given by:

	
s2


¼ 1

2ðnþ 1Þ2
Xn�1

i¼0

Xn

j¼iþ1

D
x2

ij

E

0 10 20 30 40 50 60
0

5

10

15

20

25
(b)

pe
rc

en
ta

ge
 o

f 3
N

 w
al

ks
 

percentage of walks over Euclidean distance

0 10 20 30 40 50
0

5

10

15
(d)

pe
rc

en
ta

ge
 o

f 3
N

 w
al

ks

percentage of walks over Euclidean distance

distances for the tetrahedral lattice.
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where hxij
2i is the mean-square end-to-end distance from ith

segment to jth one. This means that we need to find the num-
ber density that bead j will reach a particular pose relative to
bead i given constraints on the proximal and distal ends.
In ring closure, the distal and the proximal are fixed to the
origin. For a fixed distal end pose g we have that fn( g)¼
( fi*fj�i*fn�j)( g). When we fix the distal end at g¼ e, ring clo-
sure results. In this case, the probability/number density that
bead j reaches pose z relative to the reference frame at bead
i is:

Fi;j
e ðzÞ ¼

fj�i

�
z
�

fnðeÞ
X
h ˛G

fi

�
h
�
fn�j

�
z�1+h

�
:

By finding the mean-square end-to-end distance associated
with Fe

i ,j(z) (by marginalizing over all variables except for
the radial direction) we can find hxij

2i in the expression for
the radius of gyration of the rings. The details for the case
of the tetrahedral lattice become slightly more complicated
due to its ‘two definability’, but the basic principle is the same.

In Fig. 16 we see the mean-square radius of gyration of
rings with respect the number of segments for the tetrahedral
lattice (we have rings only for even number of segments) in
the upper plot, whereas in the lower plot we see the ratio
b2N/R2. We see that this ratio approaches 12.

7.3. Shape of the distribution between the limits

The shape of the distribution function for r is specified by
dimensionless ratios constructed from the even moments,
hr2pi0=hr2ip0. The ratio with p¼ 2 specifies the width, the ratio
with p¼ 3 specifies the skewness, etc. In the limit, as n / N,
these ratios are known precisely (as ratios of positive integers)
for many values of p. Indeed the importance of these proper-
ties is stated also in Ref. [6] in chapter 2 written by Akten,
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Fig. 15. Result of JacobsoneStockmayer versus the one obtain by convolution.
Mattice and Suter. The asymptotic values of these ratios are
given precisely in Ref. [36] and these are:

hr4i0
hr2i20

¼ 5

3
;
hr6i0
hr2i30

¼ 35

9
;
hr8i0
hr2i40

¼ 35

3

This asymptotic value of the ratios of the even moments of the
mean end-to-end distance was initially calculated by Flory and
Jernigan [5,46,48,47]. The most computationally convenient
method for calculating both the mean radius of gyration and
its higher moments and the even moments of the mean end-
to-end distance is presented in a work by Mattice and Sienicki
[45]. Before trying to calculate the even moments of the mean
end-to-end distance by using the convolution method we cal-
culated both the even moments of the mean end-to-end dis-
tance and the even moments of the mean radius of gyration
by using the method presented in that paper [45]. The way
we did this was for the cubic lattice to set in Eq. (8) of [45]
q¼p/2 and f ¼ 0; p=2; p; 3p=2, and for the tetrahedral
lattice q¼ 1.2310 and f ¼ 0; 2p=3; 4p=3. For the lengths l
we set for the cubic lattice the number one and for the tetrahe-
dral lattice the number

ffiffiffi
3
p

. After working according to the pa-
per we obtain the values of these moments with respect to the
number of segments. Next we proceeded by calculating the
ratios dividing accordingly. The results (obtained according
to the method of Mattice and Sienicki [45]) converged to the
specific value. Next we calculated through the convolution
method the values of the even moments of the mean end-to-
end distance for the tetrahedral lattice. The method for calcu-
lating these quantities is similar to the calculation of the
second moment (mean-square end-to-end distance). We com-
pare these results with the one obtained by the method of
Mattice and we had absolute match.

In Figs. 17e19 we present the comparison and the con-
vergence of the ratios of the 4th, 6th and 8th moment of the
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Fig. 16. Verification of the Zimm result for the tetrahedral lattice.
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Fig. 18. Ratio6 for the tetrahedral lattice obtain both by the convolution and

the Mattice method.
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Fig. 19. Ratio8 for the tetrahedral lattice obtain both by the convolution and

the Mattice method.
end-to-end distance for the tetrahedral lattice. The thick line
corresponds to the result obtained by the Mattice method.
As we see the two methods give the same results and converge
to the desired values. It is worth mentioning that for finding
these ratios Mattice method is much faster.

8. Conclusions

This paper presented a new method for generating the
conformational statistics of lattice models of chain molecules.
Poses of reference frames attached to the chain as it intersects
with each of the lattice sites served as inputs. All of the distri-
bution functions corresponding to the zn0 independent lattice
conformations were generated for all values of n0 up to n in
O(nDþ1) arithmetic operations for D¼ 2 or 3 dimensional lat-
tices. That was achieved by performing convolutions with re-
spect to the crystallographic space group for each lattice. The
formulation was modified to include the effects of an obstacle
(excluded volume) in a lattice, and to calculate the frequency
of the occurrence of each conformation when the effects of
pairwise conformational energy are included. In the latter
case (which was for three dimensional lattices only) the com-
putational cost is O(z4n3). This polynomial complexity is
a vast improvement over the exponential O(zn) complexity as-
sociated with the brute-force enumeration. The distribution of
end-to-end distances and average radius of gyration were cal-
culated. The method was demonstrated on square, hexagonal,
cubic and tetrahedral lattices. The next step of this work is to
extend our research on finding tight upper and lower bounds
on self-avoiding walks.
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